

Recent, Current and Future Developments in Video Coding

Jens-Rainer Ohm

Institut für Nachrichtentechnik RWTH Aachen University

- Recent and current activities in MPEG Video and JVT
 - Scalable Video Coding
 - Multiview Video Coding and 3D Video
 - MPEG-C Reconfigurable Video Coding
- The Future: Increasing Compression Performance?
 - Will Video data rates and formats continue increasing?
 - Examples of tools for improved compression

^{2 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Scalable Video Coding

Scalable Media Networking – The Idea

- Universal Media Access: code once and then customize the stream to access content
 - Anytime"
 - from "Anywhere" (i.e. using any access network wireless, internet etc.)
 - and by "Anyone" (i.e. with any terminal complexity)
- Compatibility of different formats/resolutions

Scalability of Video - Modalities

Temporal: change of frame rate

Spatial: change of frame size

QCIF

Fidelity: change of quality (a.k.a. SNR)

CIF

HDTV

High rate

Low rate

TV

6 May 09, 2008 Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

of VGA services

Spatial and temporal format extension

Backwards-compatible introduction

Example: Format Enhancements in Mobile TV

Hierarchical prediction structures

Non-dyadic temporal scalability

Low-delay prediction structure (structural delay is 0)

Layered Coding for Spatial Scalability

- Layered coding
 - Oversampled pyramid for each resolution:
 e.g. QCIF, CIF, 4CIF, 16CIF
 - MC prediction structures of all layers are aligned
- Inter-layer prediction: Switchable prediction (with upsampling)
 - Prediction of intra macroblocks
 Prediction of partitioning and motion information
 - Prediction of residual data

Spatial Prediction of Data

Spatial Prediction of Motion Data

- Upsample macroblock partitioning as switchable partitioning predictor
- Multiply motion vectors by 2 and use them as switchable predictors

(keep list 0, list 1, bi-predictive and reference indices

information)

Spatial Prediction of Data

Block-wise bi-linear up-sampling filter

- Block-wise: block boundaries of 4x4 or 8x8 blocks
- bi-linear: small 4x4 block size

Up-sampling

Spatial Prediction of Data

Spatial Prediction of Data

Coarse-grain SNR scalability (CGS)

- Extreme case of (extended) spatial scalability
 - resolution ratio is equal to 1, no cropping
 - Requantization of residual
 - no upsampling (motion, texture) required
 - singe-loop decoding !

Single-loop Decoding

- Unlike MPEG-2, H.263, MPEG-4 scalability, the current SVC uses
 - inter-layer intra prediction is restricted to base layer macroblock that are coded in intra mode
 - single motion compensation loop (including deblocking) is sufficient at decoder side
 - only pictures of highest layer are stored in the decoded picture buffer
- Impact
 - additionally required complexity for supporting spatial and SNR scalability is small
 - Minor impact on compression performance (0 0.5 dB)
 - 17 | May 09, 2008 | Recent, Current and Future Developments in Video Coding WIAMIS 2008, Klagenfurt

Subjective Testing

- Subjective Performance Evaluation of SVC
 - Several test cases for spatial, quality and combined scalability
 - Three application scenarios: TV broadcasting, Conversational, Movie Production
 - Three profiles tested: Scalable Baseline, Scalable High, Scalable High Intra
 - SVC compared to AVC either at 10% additional bit rate or at the same bit rate
 - Visual quality evaluated in subjective tests

^{18 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Results of Subjective Testing

Baseline Broadcasting SNR Scalability QVGA - QVGA

Multiview and 3D Video Coding

Multi-View Coding

 Goal: Joint compression of an entire set of video views (captured by multiple cameras

- Possible applications:
 - Free-viewpoint systems (e.g. interactive navigation)
 - 3D TV, multiview displays
- Challenges:
 - How much compression performance can be gained by utilizing inter-view redundancies
 - There may be more than one usage scenario (e.g. different types of displays), which would require different types of optimization
 - 21 | May 09, 2008 | Recent, Current and Future Developments in Video Coding WIAMIS 2008, Klagenfurt

MVC Applications

- 3D displays have largely improved recently, and are targeting consumer markets
 - High-end displays require many views
 - Autostereoscopic displays for several users and with view correction are coming
 - Low cost stereoscopic e.g. for mobiles
 - In these cases, all available views need to be decoded
- Adaptation of view direction
 - Support head motion parallax viewing
 - Integral imaging
 - In these cases, only some views are selectively decoded (all must be available for choice)

MVC Reference Model

- Fully compatible to MPEG4-AVC at slice layer and below
- Can be seen as reorganization of input images into a single stream prior to encoding
- Uses hierarchical B-pictures combined in temporal and inter-view dimension

Objective Results Ballroom

- Without any changes at slice layer and below, roughly 20% bit rate reduction can be achieved allowing interview prediction
 - Sophisticated temporal+inter-view prediction structures can be implemented based on flexible reference picture indexing of AVC
 - No distinction between motion vectors and disparity vectors in this case
- Efficient methods for buffer and view access management have been defined, including possibilities for low delay and random access

^{25 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

- Using additional tools (changing AVC at macroblock level), only 12% additional bitrate saving have been achieved so far, in particular using
 - Illumination compensation

- Combined motion/disparity vector coding (e.g. disparity-based motion skip)
- It appears that these achievements are not (yet) mature for standardization, first phase MVC standard (ready July 2008) will not include them

- MVC (in JVT) targets joint compression of a set of multiple views, typically dense camera setup
- 3D Video is a complementary technology to enable generating a continuum of views from a much more sparse view set
 - Most probably requiring depth map representation/ compression and interpolation/rendering method
 - Most probably MVC as video compression for the sparse views
- Focus of the work: Upcoming 3D (M-view) displays in consumer applications
 - Goal: Much less data rate than direct compression of all M views by MVC
 - Good subjective quality, but certainly not measurable by PSNR
- Still unclear whether high-quality view synthesis (interpolation) needs to be normative

^{27 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

3D Video

 Maximum angle between leftmost and rightmost position expected to be around 20 degrees for the upcoming generations of displays

^{28 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

High-level view of 3DV technology chain

Reconfigurable Video Coding

Reconfigurable Video Coding

- Approach: Break down monolithic standards into more elementary building blocks
- Possible applications:
 - Simplified, more flexible standards development
 - Tailoring of existing standards for specific applications (small modifications simple)
 - Devices could "learn" updates of standards
- Current status: Both parts expected for October 2008
 - 21001-4 Codec Configuration Description (useful for non-video and non-MPEG devices)
 - 21002-4 Video Tool Library (including only video tools defined by MPEG)

^{31 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Reconfigurable Video Coding

Status of RVC Standardization

- Codec Configuration Description (23001-4)
 - Based on subset of formal description language CAL (RVC-CAL) – data-flow oriented, timing and synchronization fully supported
 - Bitstream syntax expressed using MPEG-21 BSDL schema (RVC-BSDL), which enables efficient representation by XML-based description
- Straightforward to use this throughout the entire design flow of development of video devices
 - Tools for automatic generation of C code and VHDL are available
 - Beyond the "conventional" C simulation, formal description provides rigid testing of timing behaviour, data flow etc.

Status of RVC Standardization

- Video Tool Library (23002-4)
 - Currently building blocks from existing standards defined as "functional units" (FUs) are implemented
 - Pseudocode formulation in style of old MPEG standards & CAL based reference software implementation
 - First version will support MPEG-4 Simple Profile, MPEG-2 Main Profile and AVC Baseline Profile
 - Future versions for more MPEG profiles and new tools
 - For more advanced entropy decoders (CABAC, CAVLC) dedicated FUs need to be defined

^{34 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Future Video Coding – Further Improving Compression?

- Until now, we have seen a continuous tendency with new standards appearing mostly for the purpose of increased compression performance
 - Additional functionality seems "nice to have", but not necessarily mandatory
 - For consumer applications, mainly the "low-to-medium" rate points where motion compensation is effective (not too much distortion, sufficiently far from lossless)
- Higher compression will certainly be urged by demand for higher resolution
 - Beyond HD & stereo/multiview for the home
 - MPEG-4 AVC was mainly developed for CIF/QCIF at medium/low rates, increasing usage for (low-rate) HD

^{36 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Increasing Compression Performance

- Today's video codecs (such as AVC) still working by same principle as developed around 1990
 - Separating texture and motion coding
 - Have however become much more intelligent in encoder decisions (mode switching, rate/distortion based decisions in AVC)
 - Paradigm of normative bitstream & decoder (and non-normative encoder) is traditionally used in video
- Towards lower rates, high percentage of entire bit allocation goes into mode and motion info
 - Dramatic break-down of quality below certain rate points (sequence dependent)
- Saving data rate in motion/mode and texture (intra in particular) seems to be key to improve compression

^{37 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

- Possible improvements could be possible by:
 - Texture synthesis (spatially, temporally)
 - Including structured and noisy textures
 - Improved intra prediction & coding
 - Improved motion models, including receiver-side motion update
 - Adaptive transforms or other basis functions
 - Improved motion compensation by adaptive filters
 - Closer integration of motion compensation loop and texture coding?
- Most of these require higher complexity, more "intelligence" also at the decoder side
- Another approach to go could be to decrease complexity while achieving same good results as AVC

^{38 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Improved intra prediction by texture modeling

- (Two identical objects in an image need to be redundantly coded.)
- Redundancy of recurring texture features is not fully captured.

Displacement intra prediction

- "motion compensation" within one frame [Kondo et al., 2004]
- extrapolation of partly unreconstructed partitions
- quarter-pel refinement
- ∎ simple, fast

 Displacement intra prediction – example of prediction image for "spincalendar" sequence

Markovian texture prediction by "template matching"

- both encoder and decoder perform search: no parameters
- weighted averaging of candidate elements
- good quality predictors, but complex

New intra texture prediction - results

ca. 5% average rate savings
 new macroblock type: DIP MTP simplified H.264/AVC intra
 uncolored: conventional H.264/AVC intra

New intra texture prediction - results

Sequence	Res.	$\triangle PSNR \ [dB]$	∆Rate [%]
Bus	CIF	0.347	-4.217
CITY	CIF	0.292	-4.358
Concrete	CIF	0.204	-1.575
CREW	CIF	0.217	-3.717
Football	CIF	0.202	-2.835
Foreman	CIF	0.620	-9.946
HARBOUR	CIF	0.141	-1.707
Mobile	CIF	0.342	-3.122
Shuttlestart	CIF	0.231	-4.382
Soccer	CIF	0.246	-4.488
Spincalendar	CIF	1.786	-22.606
TABLE	CIF	0.542	-8.107
Average		0.431	-5.922
CITY	4CIF	0.405	-6.096
Spincalendar	4CIF	2.814	-33.931

- Extension of template matching to inter prediction
 - Basic principle: Motion estimation at decoder, comparing neighboring template of current block against reference frame

- Template can be derived from the decoded signal or from the prediction signal
- Small search range around predictor (±1..4 pixels)

^{45 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

- Advantages of decoder-side motion vector derivation using template prediction
 - If selected (signaled by an additional mode definition) it is not necessary to transmit motion vector
 - If combined with multi-frame prediction, it is not even necessary to signal the reference frame index
 - Weighted averaging of several (best, second best etc.) matches becomes appropriate (unlike conventional coding, where a motion vectors would need to be encoded for each

^{46 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt

Combination of template inter prediction, multi-frame and weighted averaging – HD (720p) results

Template inter prediction – overall results in bit rate reduction

Sequence	Resolution	DMVD 1 Hyp	DMVD 2 Hyp	DMVD 4 Hyp	DMVD 8 Hyp
foreman	CIF 30Hz	-5.2209	-6.5985	-7.7978	-6.7912
mobile	CIF 30Hz	-1.5080	-3.2016	-5.4924	-5.4051
paris	CIF 15Hz	-1.0622	-1.6025	-2.0272	-1.2819
tempete	CIF 30Hz	-1.6167	-2.7669	-4.4590	-4.8984
bigships	720p 60Hz	-5.9903	-8.1042	-14.1659	-13.4904
city	720p 60Hz	-5.4663	-9.0854	-17.1830	-19.1836
crew	720p 60Hz	-4.1780	-5.4089	-7.3916	-7.6865
night	720p 60Hz	-1.8803	-4.6359	-7.3306	-7.7954
shuttlestart	720p 60Hz	-2.8586	-5.0851	-9.4766	-10.9685
average	CIF	-2.3520	-3.5424	-4.9441	-4.5941
	720p	-4.0747	-6.4639	-11.1096	-11.8249
	Overall	-3.3090	-5.1655	-8.3693	-8.6112

- Continuing efforts made to resolve previously open problems in video coding – example SVC
 - Not more than 10% rate increase for scalability functionality has been achieved, otherwise it would not be acceptable
- Increasing compression stays most important factor of development

 looking for increasing resolution and multiview
 - Desire for higher pixel rates grows faster than affordable network bandwidth (both for wireless and wired)
 - Bit rate must not scale up with resolution
- Current paradigms in video standardization may need revisits
 - Just some examples: non-SNR quality criteria, role of RVC, roles of encoder/bitstream/decoder/postprocessing

^{49 |} May 09, 2008 | Recent, Current and Future Developments in Video Coding – WIAMIS 2008, Klagenfurt